
LESSON 14 - STUDY GUIDE

Abstract. In this lesson we will start looking at some decay properties of the Fourier coefficients, and

how they relate to the regularity of the functions. We will also begin to address the general issue of
convergence of Fourier series, by considering its symmetric partial sums and introducing the Dirichlet

kernel to which they are intimately related.

1. Fourier series: definitions and basic properties of Fourier coefficients.

Study material: We will be expanding some of the ideas in section 2 - Summability in Norm and
Homogeneous Banach Spaces from chapter I - Fourier Series on T, corresponding to pgs. 8–16
in the second edition [1] and pgs. 9–17 in the third edition [2] of Katznelson’s book. But we will only
complete this section in the following lesson.

In the previous lesson we presented the first definitions and basic properties of Fourier series and
coefficients. In particular we saw that the sequence of Fourier coefficients of a function in L1(T) is
always bounded. Just this fact by itself is far from characterizing all sequences of complex numbers that
correspond to Fourier coefficients, as the set F(L1(T)) is, in reality, a very small subset of l∞(Z). As a
matter of fact, a prevailing theme in Fourier analysis is the attempt to characterize Fourier transforms1

and to try to deduce, as accurately as possible, the properties of the original functions from them.
Naturally, the first problem that most obviously comes to mind, in that regard, is the issue of uniqueness,
i.e. whether or not each function gives rise to its own unique sequence of Fourier coefficients, not shared
by any other function. A sort of unique fingerprint of a function in frequency space. In other words, this
is the problem of injectivity of the Fourier transform operator. The other question, that immediately
ensues, is whether the original function can then be reconstructed from its Fourier transform. This, now,
is the problem of finding the inverse Fourier transform operator. Of course the inversion problem is a
stronger one, because injectivity follows from it as no two different functions could then be reconstructed
from the same Fourier transform. If both these questions are answered positively then, necessarily, all
the properties and information about the original function should somehow be encoded within its Fourier
transform. And the issue then becomes how to read off these properties directly from it. In this lesson
we will start looking at some of these problems.

We begin by recalling that, in T, the Lp(T) spaces are nested, as p decreases, and thus L1(T) contains
them all. At the opposite end, we can identify the continuous functions on T, which are necessarily
bounded because T is compact, with their classes of equivalence in L∞(T) (because no two different
continuous functions can be equal almost everywhere with respect to the Lebesgue measure). And,
contained in the space of continuous functions, we can then consider also the higher regularity spaces of
k-differentiable functions. We should therefore think of a hierarchy of spaces of decreasing regularity

C∞(T) ⊂ Ck(T) ⊂ C(T) ⊂ L∞(T) ⊂ Lp(T) ⊂ L1(T).

Date: May 4, 2020.
1It would probably be more accurate and rigorous to denote the operator F by Fourier transformation, while calling

its output for a particular function the Fourier transform of that function. But following the common practice - which, for
that matter, is also used for other functional operators, like the derivative for example - we somewhat abusively call both,

the operator as well as its image, Fourier transform.
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Differentiable functions on T should, of course, be regarded as differentiable 2π-periodic functions on
R. This is one advantage of doing Fourier series on T, when compared to the Fourier transform on Rn:
the underlying group being compact, hence with finite total measure, implies that L1(T), on which the
Fourier transform is naturally defined, is the largest space and contains all the others under consideration.
So we are automatically equipped with an all-inclusive arena just by considering the space on which it
makes sense to define the integrals. On Rn, however, although the Fourier transform is also naturally
defined on L1(Rn), the Lp(Rn) spaces are not contained in each other and, therefore, one needs to find
a larger space of objects that includes them all, on which to work in a unified manner. And that is why
we are led to consider the space of distributions in that case.

Nevertheless, it should also be pointed out that “rougher” spaces of objects could be equally considered
on T, most notably measures and distributions too. As a quick useful example, it is easy to see how the
definitions that we have seen before for functions can be obviously extended to the space of Borel measures
on T, that we will denote by M(T). In particular, the functions f ∈ L1(T) themselves can be identified
with the measures f(t)dt/2π and, from the Radon-Nikodym theorem, we actually know that all absolutely
continuous Borel measures with respect to the Lesbesgue measure correspond to such L1(T) functions in
this manner. This way we can think of the inclusion L1(T) ⊂M(T) as identifying L1(T) with the subspace
of absolutely continuous measures within the general Borel measures, that now becomes an even larger
space of less regular objects on which to think about Fourier series. As T is compact and the measures
µ ∈ M(T) are Borel, they have finite total variation |µ|(T) <∞ and this is the natural norm on M(T).
In particular, for f ∈ L1(T), we have ‖f(t)dt/2π‖M(T) = |f(t)dt/2π|(T) = 1

2

∫
T |f(t)|dt = ‖f‖L1(T) and

therefore the identification f 7→ f(t)dt/2π between functions in L1(T) and the subspace of absolutely
continuous measures in M(T) is actually an isometric embedding. Finally, as e−int ∈ L1(T, µ), the
Fourier coefficients of a measure µ ∈M(T) can simply be defined as

µ̂(n) =

∫
T
e−intdµ(t),

with the bound

|µ̂(n)| ≤ |µ|(T) = ‖µ‖M(T), for all n ∈ Z.
This obviously coincides with the previous definition for f ∈ L1(T) when the measure is f(t)dt/2π.

One important example to keep in mind is the Dirac-δ measure at the origin, δ ∈ M(T), which is
defined by δ(E) = 1, if 0 ∈ E, for E ⊂ T, and δ(E) = 0, if 0 6∈ E. Then

δ̂(n) =

∫
T
e−intdδ(t) = 1,

for all n ∈ Z. The Dirac-δ measure is singular, with respect to the Lebesgue measure on T and cannot
be given by any function f ∈ L1(T).

So, although we also have F : M(T) → l∞(Z) we will see now that a stronger property is true for
f ∈ L1(T): the sequence of Fourier coefficients actually converges to zero as |n| → ∞.

Theorem 1.1. (Riemann-Lebesgue lemma) Let f ∈ L1(T). Then, its Fourier coefficients satisfy

lim
|n|→∞

f̂(n) = 0.

Proof. We saw in Lesson 11, Theorem 1.4, that for Ω ∈ Rn open, the set C∞c (Ω) is dense in L1(Ω). We
can easily adapt this result to show that C∞(T) (whose functions always have compact support now
because T is compact) is dense in L1(T). In fact, one can start by considering the open interval ]0, 2π[
to conclude that the set of functions in C∞c (]0, 2π[) is dense in L1(]0, 2π[) = L1([0, 2π[) and identify the
latter with L1(T).
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So, consider first g ∈ C1(T). Then, integrating by parts, we have for n 6= 0,

ĝ(n) =
1

2π

∫ 2π

0

g(t)e−intdt =
1

2π

∫ 2π

0

g′(t)

in
e−intdt =

(̂g′)(n)

in
,

where we used the fact that g ∈ C1(T) is 2π-periodic, as a function on R, and thus g(0) = g(2π). We
also have that g′ is continuous on T which is, therefore, an L1(T) function. So, from the properties of

the Fourier coefficients seen in the last lesson, we have |(̂g′)(n)| ≤ ‖g′‖L1(T) for all n ∈ Z. And this then
shows that

(1.1) |ĝ(n)| ≤
‖g′‖L1(T)

n
→ 0, as n→∞.

To conclude the proof, we use the fact that C∞(T), and thus also C1(T), is dense in L1(T), to pick a
sequence gj ∈ C1(T) such that gj → f in the L1(T) norm. Then, from Corollary 1.5 in the last lesson,

we know that ĝj(n) → f̂(n) as j → ∞ uniformly in n ∈ Z. So, from (1.1) for all of the ĝj , this implies

also that f̂(n)→ 0 when n →∞. �

Observe that the proof of the Riemann-Lebesgue Lemma that we have just presented hinges essentially
on just two ingredients: on the one hand, the fact that smooth functions are dense in L1(T); on the other
hand, that, for smooth functions, the convergence to zero of the Fourier coefficients is a simple consequence
of integration by parts.

The density property does not hold for measures, and as we saw with the Dirac-δ example, its Fourier
coefficients indeed do not decay to zero at infinity. As for the convergence to zero of the Fourier coefficients
of differentiable functions, it is absolutely crucial to take advantage of the oscillations of the exponentials,
through the process of integration by parts, to conclude it. Had we applied absolute values inside the
integral right at the start, we would have killed the oscillations, and only the constant bound ‖g‖L1(T)
would be achieved.

Integrals of the form

(1.2) I(λ) =

∫
eiλφ(x)f(x)dx,

are called oscillatory integrals, and they permeate the whole of harmonic analysis, in different forms and
circumstances, of which, of course, the integrals defining the Fourier transform are the prime example.
In the general form (1.2), the function φ is usually called the phase of the oscillatory exponential, while
f(x) is called the amplitude. By using an integration by parts argument, generalizing the one that we
used in the proof of the Riemann-Lebesgue Lemma, it is easy to show that, if φ′ 6= 0, then I(λ)→ 0 when
λ → ∞. So, any significantly large contribution to the asymptotic values of I(λ), as λ → ∞, can only
arise from points where φ′ = 0 (we can use cut-off functions to isolate these points of the domain from
the remaining ones, and correspondingly split the integrals into regions where either φ′ is zero or not).
This is called the principle of stationary phase: the relevant contributions to the asymptotic values of
an oscillatory integral result from the points where the phase is stationary which, if nonexistent, implies
that the integral vanishes as λ→∞. One can intuitively understand this principle by imagining that, if
φ′ 6= 0, then, as λ → ∞, the function eiλφ(x) oscillates very rapidly around x so that, for a reasonably
regular amplitude f around that point, the “negative and positive” contributions to the integral resulting
from the oscillations over a slowly varying f around x, cancel each other and make the integral vanish.

I insist again on the observation that an elementary absolute value estimate inside the integral erases
the imaginary exponential, and this whole subtle picture cannot then be seen: the key to these estimates
is really to carefully exploit the oscillations as best as possible. Many of the topics in more advanced
harmonic analysis revolve around the subject of estimating oscillatory integrals, or their applications:
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Van-der-Corput Lemma, Fourier transform of measures supported on surfaces, restriction conjecture,
Strichartz estimates, etc. See Stein’s “Harmonic Analysis” book [3] if you are curious and would like to
look further into these topics.

Returning to the proof of the Riemann-Lebesgue Lemma, we can easily see that, had we used Ck(T) or
even C∞(T) functions, instead of C1(T), we could successively repeat the iteration by parts computation,
to obtain even faster decays of the Fourier coefficients at infinity. Actually, one of the central themes in
harmonic analysis is the relation between derivatives, or, more generally, regularity of functions, and the
Fourier transform. That is the the reason why Fourier analysis tools are often essential in the study of
fine properties of functions (like in microlocal analysis or in the theory of spaces of functions definied in
terms of different levels of regularity, like Sobolev and Besov spaces). A first, simple, but fundamental
result in that direction is the following.

Proposition 1.2. Let f ∈ Ck(T). Then

(1.3) f̂ (k)(n) = (in)kf̂(n),

and, for n 6= 0,

(1.4) |f̂(n)| ≤
‖f (k)‖L1(T)

nk
.

Proof. We could start from the Fourier transform of f and integrate by parts k-times to obtain the Fourier
transform of f (k), in the same manner as was done in the proof of the Riemann-Lebesgue lemma for the
first derivative. Or, in the opposite direction, start from the Fourier transform of f (k) and integrate by
parts k-times to reach the Fourier transform of f , with the identity (1.3). Let us do the latter this time

f̂ (k)(n) =
1

2π

∫
T
f (k)(t)e−intdt =

in

2π

∫
T
f (k−1)(t)e−intdt = . . . =

(in)k

2π

∫
T
f(t)e−intdt = (in)kf̂(n).

Obviously, (1.4) follows from (1.3) by using the estimate |f̂ (k)(n)| ≤ ‖f (k)‖L1(T). �

Identity (1.3) (as well as its siblings for the Fourier transform in Rn) is one of the most basic and
crucial properties in Fourier analysis, as it shows that the Fourier transform maps derivatives of the
original function to multiplication of the Fourier coefficients by powers of the frequency. More generally,
a differential operator on T corresponds then to multiplication by a polynomial on the frequency side.
This is precisely why harmonic analysis is such an important tool in the study of differential equations,
for it is typically much easier to solve a polynomial equation on the frequency side, after applying the
Fourier transform, than it is to solve the original purely differential equation.

On the other hand (1.4) shows that, the smoother the function is, the faster is the decay of the
Fourier coefficients as n→∞. At one extreme we have rough measures, like the Dirac-δ, whose Fourier
transform is constant and does not even decay, while at the other extreme, with smooth C∞(T) functions,
the Fourier transform decays faster than any power of the frequency. This again is another fundamental
and pervasive property in harmonic analysis: regularity of the functions translates into decay of the
Fourier transform.

Notice, however, that (1.4), although necessary, is not a sufficient property for smoothness of the
function. For example, the characteristic function of the interval [−1, 1], regarded as a function on T, has
Fourier coefficients

χ̂[−1,1](n) =
1

2π

∫ π

−π
χ[−1,1](t)e

−intdt =
1

2π

∫ 1

−1
e−intdt = − 1

2iπn
e−int

∣∣∣∣∣
1

−1

=
sin(nt)

πn
,

which decay as ∼ 1

n
, although χ[−1,1] is not C1, not even continuous, on T.



LESSON 14 5

If we finally start looking at the convergence of Fourier series, for general f ∈ L1(T)

S[f ] ∼
∞∑

n=−∞
f̂(n)eint,

then, the previous discussion about the decay as n→∞ of the Fourier coefficients makes it look as if we
should generally not expect this series to converge. In particular, if we demand absolute convergence, i.e.

∞∑
n=−∞

|f̂(n)| <∞,

then it seems as if we can only guarantee it for functions at least twice continuously differentiable, for

then |f̂(n)| ≤ C/n2, by (1.4). On the other hand, absolute convergence immediately implies uniform
convergence (by the Weierstrass M-test, from advanced calculus) and therefore the resulting function,
arising from the sum of the series, would be necessarily continuous. So, absolute convergence looks like
a hopelessly high bar for any f ∈ L1(T) which is not, at least, continuous on the whole circle T. And we
will see a few lessons ahead that this is indeed the case.

We could, of course, consider only pointwise conditional convergence (absolute convergence at a single
point t ∈ T obviously implies absolute and uniform convergence on the whole T). But, as is also very well
known from advanced calculus, series which converge conditionally have sums which are highly unstable
to changes in the order of the terms. So this is not a robust form of summation to be considered.
But pointwise convergence is indeed probably the most intuitive form of convergence and the one that
spontaneously comes to mind when thinking about recovering a function from its Fourier series. And,
although it has been a constant central object of study, from the first attempts by Fourier and Dirichlet,
to the impressive theorem of Carleson, in 1966, the reality is that any other form of convergence, or
more generally, any method that allows for the reconstruction of a function from its Fourier coefficients
is equally significant. With the development of the Lebesgue theory of integration, at the beginning of
the 20th century, new forms of looking at the convergence of Fourier series came to the fore: convergence
in the Lp norm and summability methods.

From here on, when we refer to the convergence of Fourier series we will always consider it as meaning
the convergence of symmetric partial sums, in some norm or at fixed points t ∈ T

(1.5) SN [f ](t) =

N∑
n=−N

f̂(n)eint,

because they are equivalent to the partial sums for the Fourier series in real form, as originally written
by Fourier,

a0
2

+

N∑
n=1

an cos(nt) + bn sin(nt).

The partial sum SN [f ] is evidently a trigonometric polynomial of degree ≤ N and with coefficients given

by the truncated Fourier coefficients of f , f̂(n) for −N ≤ n ≤ N . One can think of it as the product of

the full sequence of Fourier coefficients of f , {f̂(n)}n∈Z, with the characteristic sequence over the integers
−N ≤ n ≤ N , i.e. the Fourier coefficients of the trigonometric polynomial

∑
−N≤n≤N e

int. But, from
Proposition 1.7 in the previous lesson, we know that this is exactly the result of the convolution of f and∑
−N≤n≤N e

int. So we can conclude that:

SN [f ](t) =

N∑
n=−N

f̂(n)eint = f ∗
N∑

n=−N
eint.
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This can also be shown by a simple direct computation, as

=

N∑
n=−N

f̂(n)eint =

N∑
n=−N

(
1

2π

∫
T
f(s)e−insds

)
eint =

=
1

2π

∫
T
f(s)

(
N∑

n=−N
ein(t−s)

)
ds = f ∗

N∑
n=−N

eint.

In other words, the symmetric partial sum of the Fourier series of f ∈ L1(R) is simply the convolution
of f and the trigonometric polynomial with unitary coefficients, truncated between frequencies −N and
N . Our goal is to study the behavior of this convolution as the interval of frequencies captured by the
truncated polynomial widens to infinity. This polynomial is a central object, therefore, in the study of
the convergence of Fourier series.

Definition 1.3. The trigonometric polynomial of degree N , with all coefficients equal to 1, is called the
Dirichlet kernel and denoted by DN ,

DN (t) =

N∑
n=−N

eint =
sin(N + 1

2 )t

sin t
2

.

(the last identity is a simple exercise in the summation of geometric sequences.)
Putting everything together, we therefore conclude that

SN [f ](t) = f ∗DN (t),

which should immediately remind us of Lesson 11 and approximate identities. Unfortunately, however,
the Dirichlet kernel is not an approximate identity, and this is exactly the reason why the convergence
of Fourier series, either in the Lp norm, or pointwise, is so difficult and very often does not work.

In the following lesson we will see how to bypass this difficulty, and reconstruct the function f from its
Fourier coefficients, by simply using, not the Dirichlet kernel, but any other sequence of polynomials that
constitute an approximate identity instead. Of course, the resulting objects will not correspond to the
partial sums of the Fourier series, but nevertheless will allow us to recover f uniquely from the sequence

{f̂(n)}n∈Z. Those are called summability methods.
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